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Proteomics techniques generate an avalanche of data and promise
to satisfy biologists’ long-held desire to measure absolute protein
abundances on a genome-wide scale. However, can this knowl-
edge be translated into a clearer picture of how cells invest their
protein resources? This article aims to give a broad perspective on
the composition of proteomes as gleaned from recent quantitative
proteomics studies. We describe proteomaps, an approach for vi-
sualizing the composition of proteomes with a focus on protein
abundances and functions. In proteomaps, each protein is shown
as a polygon-shaped tile, with an area representing protein abun-
dance. Functionally related proteins appear in adjacent regions.
General trends in proteomes, such as the dominance of metabo-
lism and protein production, become easily visible. We make in-
teractive visualizations of published proteome datasets accessible
at www.proteomaps.net. We suggest that evaluating the way
protein resources are allocated by various organisms and cell types
in different conditions will sharpen our understanding of how and
why cells regulate the composition of their proteomes.

Voronoi treemap | functional classification | mass spectrometry |
cell resource allocation | cellular economy

In recent years, novel methodologies have realized biologists’
long held desire (1) to measure relative and absolute protein

abundances on a proteome-wide scale in a variety of model
organisms (2–14). Proteome datasets are often collected to ad-
dress questions such as the degree of correlation between mRNA
and protein levels or to what extent certain proteins change in
response to an applied stimulus. However, these accumulated
protein levels can also help us answer a simpler, more mundane
question: what exactly is in a proteome?
Proteins and, by extension, genes perform numerous biological

functions ranging from the catalysis of chemical reactions to the
formation of physical cell structures and the processing of envi-
ronmental signals. The fraction of the genome occupied by
certain types of genes (e.g., metabolic or signaling) is often ref-
erenced to highlight the impact of that category. This logic is all
the more compelling when discussing the proteome: given the
extremely crowded environment of the cell (15, 16) and the
amount of energy and carbon resources required to make pro-
teins (17), we expect a general selection pressure against high
protein expression, especially in microorganisms (18–21). It is
therefore of great interest for molecular biologists to know which
proteins and functional categories are most abundant: That is, in
which proteins does a cell invest the bulk of its carbon, nitrogen
and polymerization resources, reducing power, and ATP (22)?
A proper visualization can be helpful to address this question

and to explore and compare the structure of proteomes. Here, we
introduce proteomaps, which depict the composition of a pro-
teome hierarchically in various levels of granularity from general
functions to single proteins (Fig. 1). To emphasize highly expressed
proteins, each protein is associated with a polygon-shaped tile
whose size is proportional to that protein’s abundance. Although
treemaps have already been used to encode expression changes
by colors (23–25), we encode protein abundance directly by size.
We display mass fractions: i.e., protein copy numbers weighted
by the chain lengths, thus showing the amino acid investment

for protein production and maintenance. Functionally related
proteins are placed in common subregions to show the func-
tional makeup of a proteome at a glance. In interactive pro-
teomaps (available at www.proteomaps.net), tiles are linked to
further information about the proteins.
Our approach complements the popular representation of

abundances using data tables, which can be sorted to give quan-
titative information but lack some major advantages of visual
perception. Common visualizations are based on stacked bar
graphs or pie charts of measured abundances. These inherently
one-dimensional representations suffer from strong limitations
in comparison with our 2D maps. For example, proteins with
abundances around one percent are easily visible in proteomaps
whereas they become hard to make out in pie or bar plots (www.
proteomaps.net/diagrams). Another advantage is the flexibility
of arranging the proteins and their categories in a 2D plane
compared with stacking them along a line.
Because proteins carry out most of the primary tasks of life—

processing of genetic information, metabolism, signaling, trans-
port, etc.—visualizing the contents of the proteome gives us
a snapshot of how a cell invests its resources for protein pro-
duction within a given environment and growth stage. In this
study, we examine the composition of four model organisms’
proteomes with an eye toward understanding the similarities and
differences among them.
High-throughput technologies enabling proteome-wide map-

ping of protein abundances range from fluorescent microscopy
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to mass spectrometry (MS), with the latter being the most
common and highly promising. These methods produce the data
that we visualize here. Each method has its strengths but also
harbors caveats that should be noted. For example, due to their
hydrophobicity, membrane-bound proteins may be underrep-
resented in MS due to problems with quantitative extraction
using water-based solvents. In methods based on proteins tagged
with fluorophores, the expression, localization, or functionality of
proteins may be affected. Low abundance proteins might remain
below the detection limit, and highly abundant proteins can be
hard to measure due to detector saturation. Moreover, system-
atic biases can be caused by the size or physico-chemical prop-
erties of each protein: for instance, very large proteins or protein
complexes may disappear from the sample during initial centri-
fugation. Cancer cell lines, which are often analyzed as examples
of mammalian cells, might not reliably represent noncancerous
primary tissue. These caveats should be taken into account when
attempting to interpret the data. We proceed to show how
proteomaps help highlight commonalities and point to key
differences between species. Finally, we discuss how a high-
level understanding of the proteome composition can help di-
rect efforts to underresearched, highly abundant proteins and
resource-consuming cellular processes.

Results
The Big Picture: Metabolism, Translation, and Folding Dominate the
Proteome.Cells contain thousands of different proteins of various
functions. On the one hand, we are interested in understanding
which individual proteins are abundant; but, on the other hand,
we also want to understand protein levels in context. For example,
are enzymes in the same metabolic pathway expressed at similar
levels? Proteomaps allow us to inspect the proteome at several
levels of granularity. Using functional gene classifications [e.g., the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
maps] (26), we can represent the contents of a proteome hi-
erarchically by grouping proteins into pathways and then into
higher-level categories, and so forth. This hierarchy is displayed
in Fig. 1: each protein is represented by a polygon-shaped tile;
proteins belonging to the same category share similar colors and
are placed in adjacent locations to form larger regions. This
arrangement makes it easy to spot protein categories that are
the major components of a proteome. In the original KEGG
pathway maps, many proteins were assigned to more than one
category. For the proteomap, a unique annotation is chosen for
each protein (as discussed in Methods).
The proteomap presented in Fig. 1 shows the proteome of the

yeast Saccharomyces cerevisiae, measured using mass spectrom-
etry (14). Each polygon represents the mass fraction of the
protein within the proteome (i.e., the protein copy number,
multiplied by the protein chain length). At the broadest level
of functional resolution, the map is dominated by metabolic
enzymes (orange-brown) and by proteins performing the steps of
the central dogma leading from DNA to proteins (“genetic in-
formation processing,” in blue). Within the category of genetic-
information processing, the ribosomal proteins followed by chap-
erones and translation factors make up the most prominent
fractions (even though these categories contain fewer genes than
the categories of genome replication and transcription). Metabo-
lism is usually the largest constituent of the proteome, with gly-
colysis and amino acid metabolism being the biggest contributors to

Fig. 1. Proteomap of the budding yeast S. cerevisiae based on data from
ref. 14. Every tile (small polygon) represents one type of protein. Tiles are

arranged and colored according to the hierarchical KEGG pathway maps
such that larger regions correspond to functional categories. The diagrams
show three hierarchy levels (top three panels) and the level of individual
proteins (Bottom). Tile sizes represent the mass fractions of proteins (protein
abundances obtained by mass spectrometry, multiplied by protein chain
lengths). Color code: blue, genetic information processing; brown, metabolism;
red, cellular processes; green, signaling. Proteins—mostly low-abundance
ones—that do not map to any category are shown in a gray area. The light-
gray hexagon illustrates the area that covers 1% of the proteome.
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the category. For example, in S. cerevisiae grown on glucose, gly-
colytic enzymes are extremely highly expressed, occupying 15–20%
of the proteome although they make up less than 1% of the genome.
How do these observations change with different growth me-

dia or different measurement methods? Fig. 2 shows the pro-
teome of S. cerevisiae, measured via fluorescent reporters (2) or
mass spectrometry (5, 14) and, in each case, during growth on
minimal or rich media. In all four cases, the functional groups
that occupy the largest fractions of the proteome are the same:
glycolysis, amino acid metabolism, ribosomes, translation factors,
and chaperones. This remarkable similarity vividly shows that
even significant changes in the physiology of the cell and the
abundance of single proteins create only a limited shift in the
allocation of protein resources in the grand scheme.
Expression levels can vary greatly between individual proteins

in the same functional group. Glycolysis contains many of the
most abundant proteins, with enzymes like enolase constitut-
ing 2–4% of the proteome. Other glycolytic enzymes, however,
are much less abundant. In contrast, the ribosomal proteins
are expressed at comparable levels, as might be expected given
the stoichiometric assembly of the ribosome. Absolute protein
copy numbers can be plotted instead of mass fractions (www.
proteomaps.net) to interrogate whether multiprotein complexes
are expressed stoichiometrically.

Proteomaps Highlight Proteome Composition Conservation and
Species-Specific Trends. In this study, we include cells from four
well-studied species: Mycoplasma pneumoniae, Escherichia coli,
S. cerevisiae, and Homo sapiens cell lines. These cells’ volumes
span five orders of magnitude (from about 0.1 μm3 to over 1,000
μm3), and their growth rates differ considerably (characteristic
doubling times ranging from <1 h to about a day). They repre-
sent various modes of life ranging from obligate parasitism to
multicellularity and vary considerably in shape and number of
compartments. Comparing the proteomes of these very different
species may tell us which features of the proteome are conserved

throughout evolution and, on the other hand, in which cellular
functions the cell’s investment changes dramatically.
Looking at the major functional categories in the composition

of these four proteomes, one finds that, within genetic in-
formation processing (Fig. 3, blue), the total amount of protein
dedicated to translation is 2–15 times larger than the amount
invested in transcription or in DNA maintenance (including the
replication machinery, histones, and DNA repair). In metabo-
lism (Fig. 3, orange-brown), glycolytic enzymes consistently re-
quire a larger fraction of the proteome than the TCA cycle and
oxidative phosphorylation, which, under aerobic conditions, are
the major source of energy for many organisms. Although it
contains only a handful of genes, glycolysis is a larger constituent
of the proteome than almost any other pathway.
In contrast, some of the functional categories that dominate

the focus of research laboratories are not nearly as well-repre-
sented in the proteome. For example, the genes involved in cell
signaling (Fig. 3, “environmental signal transduction,” in green)
occupy about 4% of a human HeLa cell line proteome and below
1% in S. cerevisiae and E. coli. Thus, signaling proteins are
examples of systems that constitute a small fraction of the pro-
teome but have an outsized effect on the organism’s behavior.
In all organisms considered here, metabolic proteins and the

proteins implementing the central dogma are the two dominant
constituents of the proteome, with the cytoskeleton and similar
cellular processes representing a third major contributor in hu-
man cell lines. In all cases, signaling proteins make up a small
fraction. The fraction associated with nonmapped proteins (i.e.,
proteins that are not linked to our functional hierarchy, possibly
because of unknown function) ranges from about 10% in the well-
annotated E. coli and S. cerevisiae proteomes to about 20% in the
less thoroughly mapped M. pneumoniae and H. sapiens.
The areas occupied by different functional groups of proteins

change drastically between organisms, often matching known
physiological differences between them. Ribosomal proteins
make up a large fraction of the proteomes of all four organisms,
but the exact percentage varies greatly among them, ranging
from less than 5% of the proteome inM. pneumoniae and human
cell lines to about 10–20% in the faster-growing E. coli and
S. cerevisiae. This trend across cell types could be associated with
their different growth rates, as suggested by studies comparing
ribosome abundance in different microbial growth conditions
(27, 28) and by growth rate-dependent proteomes of E. coli (13)
(see maps on www.proteomaps.net).
The total protein concentration in the cytosol is fairly stable

(typically 200 gr/L) (16). However, there are also membrane
proteins, such as transporters, and DNA-associated proteins, like
histones, whose concentrations on membranes or along the DNA
are dictated by geometric or physiological constraints and whose
mass fraction should therefore vary with membrane area and
genome size per cell volume. Indeed, transporters, although
prone to various extraction biases, show a trend where they make
up several percent of the proteome inM. pneumoniae and E. coli,
while accounting for 1–2% in S. cerevisiae and much less in the
H. sapiens cell lines. This difference might stem from the fact
that the ratio of outer membrane surface area to cell volume is
smaller for larger cells.
Some functional categories are particularly pronounced in cer-

tain organisms in accordance with their different cell structures or
modes of life. As can be seen in Fig. 3, a HeLa cell devotes a much
larger fraction of its proteome to cytoskeletal proteins (more than
15%) than E. coli (0.3%). It is striking how 17% of S. cerevisiae’s
proteome is devoted to glycolysis, possibly a result of many years of
selection for increased ethanol production.
Using proteomaps, one can easily distinguish between cells

from different domains of life. How large are differences among
cell lines from the same organism? Does the composition of the
proteome differ more when comparing two human cell lines or
when comparing human and chimpanzee cells of the same type?
Fig. 4 shows a comparison across three different cell lines. We
find it striking how similarly proteome resources are allocated

Fig. 2. Proteomaps of the budding yeast S. cerevisiae, compared across nu-
trient conditions and measurement methods. Yeast cells were grown in a rich
(Left) or minimal medium (Right). In a minimal medium, the proteome fraction
of amino acid biosynthesis enzymes is higher. Protein abundances were mea-
sured by mass spectrometry (Upper) in rich (14) and in minimal (5) media, or by
fluorescence of GFP-tagged proteins (Lower) in YEPD versus SD media (2).
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among cellular functions. The proteomaps of lymphoblastoid
cells from human and chimpanzee are almost identical, even
more so than the already very similar proteomes of various hu-
man cell lines. Differences between independent measurements
of the same cell line are also shown for HeLa and U2OS cells.
Many previous analyses focused on proteins that are expressed at
relatively low levels, such as signaling proteins, where differences
are pronounced. However, proteomaps reveal that functional
categories and even dominant individual proteins are strongly
conserved in terms of abundance. Differences and similarities at
finer levels of functionality and at the single protein level can be
analyzed in detail on the proteomaps website. As a follow-up to
the comparison reported here, one can analyze cells from dif-
ferent tissues and between cell lines and primary cells.

Discussion
Individual proteins can confer benefits to the cell in various ways,
by catalyzing a chemical reaction, transporting an essential sub-
strate, or transmitting signals that reflect the state of the envi-
ronment. However, proteins also incur various costs: Proteins are
made using precious carbon, nitrogen, sulfur, reducing power
and energy resources, they require ribosomes for their continued
synthesis, and they occupy volume in the crowded intracellular
space (16). These general costs are roughly independent of the
protein’s identity and approximately proportional to its weight.
Nevertheless, expressing a protein can have other more protein-
specific effects that add to the costs, such as protein misfolding,
perturbing the membrane integrity, creating an imbalance in the
cell redox or energy state, etc. Such protein-specific costs are not
captured by the visualization presented here.
Classical molecular biology studies often consider a protein

important if knocking out its gene dramatically affects the be-
havior or viability of the cell. This approach often focuses efforts
on regulatory proteins, such as transcription factors, which tend
to have low expression levels. Theoretical analysis of metabolic
enzymes (29) suggests an alternative interpretation of importance
via the concept of relative marginal benefit that is predicted to be
proportional to protein levels. Taking a quantitative proteomics

viewpoint and observing how a cell invests its protein resources
can help identify abundant proteins that are pivotal in certain
environments but have unknown or poorly characterized function.
Therefore, we propose that, all else being equal, highly abundant
proteins are promising candidates for research efforts.
In the near future, proteome data will become available for

many cell types and growth conditions. Proteomaps can also be
applied to RNA transcript data, to phosphoproteome data, or—
more generally—to the complete mass composition of a cell
(including all types of macromolecules and small molecules).
Furthermore, beyond molecular abundances, other genome-
wide quantitative properties can easily be visualized. We sug-
gest that proteomaps can help researchers achieve a clearer
picture of similarities and differences in cell composition and
the allocation of cellular resources across organisms, cell types,
and growth conditions.

Methods
Proteome Tree Maps Visualization. To generate proteomaps, we modified the
algorithm for the construction of Voronoi treemaps described in ref. 23 to
present polygons with variable sizes. The algorithm was implemented in the
Paver software (DECODON), which is available at www.decodon.com/paver.html
or upon request from the authors. Example maps on www.proteomaps.net
can be browsed interactively; individual protein tiles are linked to protein
information on the KEGG website (www.genome.jp/kegg/).

In the proteomaps shown here, we visualize three levels of functional
categories and a level of individual proteins. To create a proteomap, a total
area is first divided into polygons representing the top-level categories. These
polygons are constructed from a Voronoi diagram, where the polygons’ areas
were chosen to represent copy numbers weighted by protein chain lengths
(the investment in terms of amino acids, also termed the mass fraction). The
top-level areas are then subdivided into subcategories, and the procedure is
repeated down to the level of individual proteins. When several orthologous
proteins exist in the same proteome, e.g., isozymes such as the two enolases
Eno1 and Eno2 in yeast glycolysis, they share one subdivided polygon.

Proteins that do not have a functional category annotation are lumped in
a subclass labeled “Not mapped.” Mass fractions smaller than 1/1,500,000 of
the whole proteome (corresponding to 4 pixels within an area of 2,500 ×
2,500 pixels in size) are excluded. The arrangement of categories and

Fig. 3. Proteomaps of several model organisms. (Upper) Proteomaps labeled by functional categories. (Lower) The same diagrams, with gene names. Protein
abundances shown are for the tiny human pathogenM. pneumoniae (7), E. coli growing at a rate of 0.48 1/h (13), S. cerevisiae (14), and anH. sapiensHeLa cell line (11).
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proteins over the area is kept as consistent as possible between proteomaps.
To ensure a similar layout across datasets, a template proteomap can be
used to initialize proteomaps for other datasets at the highest hierarchy
level. However, due to differences in protein abundances, congruent
arrangements cannot always be fully achieved. Colors are used for associa-
tion within functional categories and have no quantitative meaning. Spe-
cifically, small variations in color are used to differentiate among detailed
functional categories within the same broad functional category: e.g.,
shades of blue within “Genetic Information Processing” (Fig. 1).

Protein Abundance Data Sources and Gene Mapping. Protein data were taken
from the original publications and from the proteome database PaxDb (pax-
db.org) (30). Criteria for choosing datasets to be included were as follows:
a high proteome coverage; quantitative values that are proportional to
abundance, ideally reported as absolute numbers; and refraining from bia-
ses such as mixed cell types or a known strong misrepresentation of cellular
compartments or functions. All proteomes had been quantified by mass
spectrometry, except for the data from ref. 2, which were quantified by fluo-
rescence of GFP-tagged proteins. To assign proteins to functional categories,

systematic gene names (ORF names) were annotated with KEGG Orthology
identifiers (26). Protein chain lengths were obtained from Uniprot. Proteins
of unknown length, due to mapping issues, were assigned a standard length
of 350 amino acids.

Protein Functional Hierarchy and Category Assignment. KEGG pathway maps
were chosen as a basis for our functional gene hierarchy because of their clearly
layered structure, which shows protein functions in different categories on
a comparable degree of resolution. Proteins are assigned to functions via Kegg
Orthology (KO) IDs, which makes them comparable between organisms.

In the KO, as in most other gene-classification schemes, the same pro-
tein can be assigned to multiple functional categories. However, a major
limitation of all hierarchical visualization methods, including our use of
Voronoi Treemaps, is that they require a tree-like hierarchy: i.e., multiple
assignments are not allowed (23, 31). This inherent drawback forced us to
assign multifunctional proteins to only one bottom-level category, prefer-
ably to the one corresponding to their principle task. We are aware that this
assignment can depend on the researcher and does not fully reflect the
nature of biological multifunctionality. In general, we defined a default
priority order between the functional categories and assigned each KO ID to
the bottom-level category with the highest priority. For instance, assign-
ments to “Transcription” would override assignments to “Metabolism,” and
therefore the protein RpoB was placed within “RNA polymerase” and not
“Purine metabolism.” The default choice can be overridden by manual
assignments. Moreover, we found that, for consistency with the literature,
some functional categories had to be added, renamed, or restructured. The
customized version of the KEGG hierarchy can be downloaded from www.
proteomaps.net.

Because each KO ID appears, on average, in about two pathway cate-
gories, our priority order can create a bias toward certain categories. To
quantify this bias, we randomized the priority order and computed median
values and uncertainty ranges for category areas arising from different
possible protein annotations. We found that random reassignments had only
a small effect on the overall category areas and that none of our qualitative
observations changed substantially.

The KEGG hierarchy proved useful for the present purpose, but proteo-
maps can also be produced with other classification trees such as TIGRFams,
the original KEGG pathway maps, the Munich Information Center for Protein
Sequences (MIPS) Functional Catalogue, The SEED (www.theseed.org), Riley
scheme-derived classification systems, and many more (32, 33). Ontologies
such as the widely used and flexible Gene Ontology (GO) (geneontology.org)
(34) are typically directed acyclic graphs rather than a tree. In the GO, many
nonterminal nodes are connected to several higher-level terms, and terminal
terms are located at different distances from the root; for some genes, the
GO contains more than 10 hierarchy levels. We found that proteomaps with
a compact 3-level hierarchy are useful for visual comprehension. Thus,
adapting the GO requires adaptation beyond the scope of this study. Nev-
ertheless, we supply an example of a proteomap based on the GO for the
curious reader in www.proteomaps.net/go.

When generating a proteomap, there are two required inputs: a hierarchy
file and a data table. The hierarchy file is written in a simple textual format
that can be easily edited with any text or spreadsheet editor. Layers can be
added or removed, and genes can be moved between categories to reflect
new discoveries. This format can also be used to introduce another level of
organization to a proteomap: e.g., to display proteins that typically form
complexes as clusters.
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